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Evolutionary Multi-Agent 
Systems: An Adaptive and 
Dynamic Approach to 
Optimization 
 
 

This paper explores the ability of a virtual team of specialized strategic software 
agents to cooperate and evolve to adaptively search an optimization design space.  Our 
goal is to demonstrate and understand how such dynamically evolving teams may 
search more effectively than any single agent or a priori set strategy.  We present a core 
framework and methodology which has potential applications in layout, scheduling, 
manufacturing, and other engineering design areas. The communal agent team 
organizational structure employed allows cooperation of agents through the products of 
their work and creates an ever changing set of individual solutions for the agents to 
work on. In addition, the organizational structure allows the framework to be adaptive 
to changes in the design space that may occur during the optimization process.  An 
evolutionary approach is used, but evolution occurs at the strategic, rather than solution 
level, where the strategies of agents in the team are the decisions for when and how to 
choose and alter a solution, and the agents evolve over time.  As an application of this 
approach in a static domain, individual solutions are tours in the familiar combinatorial 
optimization problem of the traveling salesman.  With a constantly changing set of these 
tours, the team, with each agent employing a different solution strategy, must evolve to 
apply the solution strategies which are most useful given the solution set at any point in 
the process.  We discuss the extensions to our preliminary work that will make our 
framework useful to the design and optimization community.  
 
 

 
 
1 Introduction 

 
True engineering design is a cooperative process in which 

individuals with different areas of expertise coordinate their 
efforts to develop the best solution to a given problem [1].  Such 
problems, especially in the early stages of design, are often open-
ended, multi-modal, and even dynamic [2].  In industry, 
individuals on a design team may be considered specialists 
whose approaches for moving designs towards optimality are the 
product of both their own and their predecessors’ experiences.  
The effective application of each individual’s approach depends 
not only on what the particular approach is, but also on how and 
when it is employed based on the team’s progress.  For example, 
computational fluid dynamics or finite element analysis is not as 
valuable early in the design process as back of the envelope 
calculations and heuristic estimations.  Together, the approach to 
design improvement and the timing of its application can be 
considered a strategy.  We seek to understand how strategies 
evolve in a cooperative virtual team so that the team as a whole 
yields better designs than any single individual’s strategy alone 
or a priori set team strategy. 

This paper introduces EMAS – an Evolutionary Multi-Agent 
System for adaptive optimization which employs the evolution of 
design strategies within a cooperative virtual team.  As is the 
case in current engineering design processes, solution strategies 
in EMAS evolve as conditions change and as new solution states 

are discovered during the optimization process, so that the best 
strategies are employed at the correct time.  Evolution is not a 
new concept in optimization and problem solving [3], but the use 
of evolutionary processes is typically applied at the solution 
level, rather than at the strategic level.  In our framework, the 
strategies for generating solutions are recombined, altered, and 
removed by applying genetic operators that in typical genetic and 
evolutionary algorithms are performed on individual solutions.  
We also add a cooperative dimension to the evolutionary process, 
which distinguishes our work as well from genetic and 
evolutionary programming techniques.  Cooperation between 
design team individuals is modeled in our framework by 
embodying each strategy in an autonomous agent and allowing 
the population of agents to communicate.  Communication 
between agents involves the posting of working and completed 
solutions to the design problem in communal or shared 
databases.  The team of agents navigates the design space 
cooperatively as individuals apply genetically encoded 
approaches for altering solutions contained in these databases 
according to genetically encoded rules for when to do so.  At the 
same time, selection, mutation, and reproduction of agents in the 
team allow strategies to evolve and adapt to the specific problem 
and design space. 

The evolution of cooperating solution strategies is presented in 
this work to combat the problem of not knowing which strategy 
to use in an unknown, but static design space.  In our example, 
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we use the familiar combinatorial optimization problem of the 
traveling salesman.  This problem has many extensions to design 
in the areas of manufacturing process planning, routing, and 
scheduling.  It is a difficult problem to solve but is also so well 
studied that many strategies have been developed and several 
sample problems with known solutions are available.  However, 
the EMAS framework is also designed to be robust and flexible 
in dynamic design spaces – those in which constraints, 
objectives, even dimension and size of the problem are changing.  
Changes in the design space are reflected in the shared databases 
and are thus passed on to all agents indirectly without disrupting 
the design process.  Through both the evolution of the agents, 
again embodying the strategies for generating solutions, and their 
cooperation as a team, the best set of strategies for generating 
solutions to a particular problem at each point in the optimization 
process is created. 
 
2 Background 
 
2.1 Agent-Based Methods 

 
We have chosen to represent strategies in this work as 

autonomous software agents.  Though the definition of “agent” is 
a topic of some debate in the theoretical artificial intelligence 
community (see Franklin and Graesser [4]), we define agents 
here as entities which perceive their environment, in this case the 
shared memories and solutions, and autonomously act upon that 
environment through effectors.  This definition is very similar to 
those of Russell and Norvig [5] and De Souza [6].    

EMAS follows in the footsteps of several other agent-based 
approaches which have been very effective in optimization and 
engineering design.  Most notably, the structure of EMAS, with 
shared memories or databases as the primary mode of 
cooperation between algorithmic or strategic agents, is closest to 
the concept of Asynchronous Teams (A-Teams) [6,7,8].  This 
concept was also extended in the research of Campbell, Cagan, 
and Kotovsky [1] for engineering design environments where 
user preferences in multi-objective conceptual design problems 
were changing.  In the work of Olson and Cagan [2], the effect of 
cooperation and coordination of design decisions in these 
systems in the area of manufacturing process planning was 
studied as well.  Each of these approaches have proven that 
agents with different abilities, cooperating on a common problem 
can produce more and better solutions and designs than any 
individual working independently.  Our extension to these earlier 
approaches is in the incorporation of the evolutionary process for 
determining the best set or team of abilities for solving that 
common problem.  Instead of specifying the agents’ abilities and 
strategies a priori, we allow these characteristics to emerge 
naturally by subjecting the team to the processes of evolution.  
Again, our goal is to study how these strategies emerge in a 
dynamic virtual design team of cooperating but specialized 
individuals. 
 
2.2 Algorithm Portfolios 
 

The population of agents in EMAS represents a set of 
strategies for creating solutions.  This population evolves as a 
result of selective pressure on the strategies, or agents, to perform 
better given the current problem definition and the set of 
solutions in the memory.  Similar motivation is employed in 
algorithm selection [9], algorithm portfolios [10,11], meta-
learning [12] and other similar paradigms [13] which seek to 

understand and exploit the (often unknown) properties of 
algorithms that make them successful.  Unlike many of these 
approaches, in EMAS, each agent cooperates by working off of 
the solutions created by other agents.   In this way our work is 
similar to that of Moral, Sahoo, and Dulikravich [14], in which a 
single population of candidate solutions is transferred 
automatically between different evolutionary algorithms, with 
the criteria for switching between the algorithms specified a 
priori.   EMAS extends work in this area by making the agents 
autonomous, capable of deciding on their own when to affect 
which solution or solutions.  Thus rather than automatic selection 
of the best algorithm or set of algorithms at an appropriate time 
by an external “manager”, the choice is distributed among the 
agents (or algorithms).  This means that instead of having to tune 
global parameters for switching between algorithms or agents, 
such as a function for online time allotment to each algorithm 
[15] or amount of improvement necessary to continue running an 
algorithm, these decisions can be made and updated locally.  Not 
only that, the decision making criteria can change over time to 
adapt to new environmental conditions as the agent population 
evolves. 
 
2.3 Evolutionary Computing 
 

The fact that strategies, embodied in agents, evolve over time 
makes EMAS an extension of evolutionary computation 
[16,17,18] as well.  The individuals in EMAS are agents, which 
again correspond to solution strategies - methods of choosing and 
transforming solutions in the shared memories.  EMAS has 
several advantages associated with the evolutionary computation 
areas of genetic and evolutionary programming – namely that a 
fixed string or complex representation of the solution is not 
necessary [19].  The extension of EMAS in the area of 
evolutionary and genetic programming comes from the 
incorporation of cooperation between individuals in the 
population.  Though cooperation has been considered between 
multiple related populations in cooperative co-evolution [20], 
few have considered or exploited cooperation within the same 
population.  One exception is the work of Cristea, Arsene, and 
Nitulescu [21], which explores the concept of an evolving 
population of sensorimotor agents navigating in a changing 2D 
world.  EMAS abstracts concepts from this research as well for 
the more complex interaction of agents needed for engineering 
design with EMAS.  A summary of the placement of EMAS in 
terms of the related literature can be seen in Table 1. 
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Table 1 Placement of EMAS in relation to relevant evolutionary computing concepts and literature 

 
Individual Multiple Populations? Cooperation

Genetic/Evolutionary Algorithms Solution No None
Genetic/Evolutionary Programming Solution strategy No None
Cooperative Co-evolution Partial solution Yes Between populations
Evolutionary Multi-Agent Systems Solution strategy (Agent) No Between individuals  

 
 

3 Traveling Salesman Problem 
 

The Traveling Salesman Problem (TSP) was chosen as an 
application for the proposed framework because it is such a well 
known and straightforwardly defined problem with extensions to 
the engineering areas of planning and scheduling.  However, the 
goal of this work is not to present an algorithm which solves the 
TSP better than any other algorithm thus far.  Instead, we wish to 
illustrate through a well studied example problem that our 
framework is capable of increasing the effectiveness of 
individual solution strategies by evolving and coordinating them 
in a decentralized manner.  The objective of the TSP is, given a 
set of cities and a cost function associated with traveling between 
each pair of cities, to find the round trip tour with the lowest cost 
that visits each city once and only once.  For the problems we 
will explore in this paper, the cost, or distance, function between 
cities is a ‘pseudo-euclidean’ function described by Padberg and 
Rinaldi [22].  However, extension of the TSP to engineering 
design applications such as scheduling and manufacturing 
planning can be accomplished by utilizing different cost or 
distance functions. 

Simple, heuristic algorithms for solving TSP were 
intentionally used in place of more powerful ones like the 
Concorde TSP solver [23,24] so that the inner workings of the 
EMAS team and its ability to create solutions superior to those 
created by individuals could be studied more easily. There is 
another reason for this choice as well: as design problems 
become more and more complex, the algorithms and tools for 
solving them become similarly complex and the conditions under 
which those tools are successful are often unknown.  Though the 
simultaneous search of both strategy and solution space may 
seem unnecessary, it avoids a posteriori fine tuning of 
parameters and assumptions of the design space characteristics 
that can plague other more centralized optimization approaches.  
By showing that the bi-level approach is effective at producing 
good solutions even when the algorithms and methods used are 
not the ‘best’, we are also able to provide designers with an 
alternative to trial and error experimentation with multiple 
algorithms as more complex problems are encountered.   

The algorithms chosen fall into three categories: construction, 
improvement, and reduction.  Construction algorithms are so 
named because they take, as input, an incomplete or partial tour 
and return either a complete tour or a longer partial tour after 
adding cities in a predefined, heuristic manner.  For this study 
three simple heuristic construction algorithms, nearest insertion, 
farthest insertion, and arbitrary insertion, were used (for 
descriptions of these algorithms, the reader is referred to Golden 
and Stewart [25]).  Improvement algorithms, as their name would 
suggest, improve an existing partial or complete tour by 
rearranging the order of the cities in the tour based on different 
rules.  There were three heuristic-based improvement algorithms 

used in this study, 2-Opt [26], 3-Opt [27], and simple mutation 
(city swapping).  Reduction algorithms break down complete 
tours into partial tours.  In this work, two very basic heuristic 
reduction algorithms are employed.  The first of these is random 
reduction, which involves randomly removing a random number 
of cities in the tour.  Best partial reduction, the second reduction 
algorithm, returns the best partial tour (the tour with the shortest 
average leg length) containing half of the total number of cities 
in the same consecutive order as the original tour. 
 
4 Methodology 
 
4.1 Evolutionary Agents 
 

To perform genetic operations such as crossover and mutation, 
we have chosen to represent EMAS agents, again embodying 
strategies, as binary strings.  Other representations abound in the 
evolutionary computation literature, see  Rothlauf [28] and Deb 
[29], but binary is generally regarded as the simplest 
representation for individuals.  The binary string, or 
chromosome, defining an individual agent in the evolving team 
of the proposed framework represents the decisions the agent 
will make in its lifetime, in other words, its behavior.  We argue 
that decisions should be the primary element of an agent’s 
genetic makeup because autonomy, the ability of an agent to 
make decisions on its own without being told what to do, is 
essential to the definition of an agent [7,30].  For the particular 
application of the TSP, agent decisions were defined as follows: 

 
1. From what memory will a tour be chosen, 
2. Which tour from that memory will be worked on, 
3. How will the chosen tour be worked on (i.e. which 

algorithm will be run), and 
4. Where (which memory) will the new tour be put once work 

is completed on it. 
 
Thus, the chromosome of each agent consists of four binary 

genes identifying these properties (see Fig. 1).  It is important to 
reiterate that unlike typical genetic algorithms, these gene strings 
represent agents’ strategies for generating solutions, not the 
solutions themselves.  The choice method defines the tour 
characteristics which will make an agent more or less likely to 
choose that tour, i.e. if the agent will choose the best tour, the 
worst tour, be biased towards better tours, or be biased towards 
worse tours.  These choice methods may be made more complex 
as well by increasing the gene length or representation to include 
reference to specific characteristics of a solution which make it 
more or less attractive to an agent.  Note also that incorporating 
more complex or powerful algorithms into EMAS is simply a 
matter of changing the encoding paradigm for the algorithm 
gene, for instance by increasing the number of bits to describe 
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the algorithm.  In addition, the gene could be lengthened to 
describe additional parameters of algorithms which we would 
prefer not to specify a priori, such as how many iterations to run, 
convergence criteria, etc.  This could be particularly useful in 
design problems where multiple algorithms or heuristics may be 
available but where the parameter specification greatly affects 
algorithm performance on particular problem classes.  The 
significance of the memories will be discussed in the next 
section. 
 

 
 
Fig. 1 Structure of proposed EMAS agent chromosome 
 
4.2 Agent Organization: Creating an Evolutionary Multi-Agent 
Team 

 
The agent system architecture developed is similar to the 

asynchronous team architecture developed by [8] in that it 
incorporates the idea of shared memories, which allow agents to 
cooperate indirectly by providing a place for agents to present 
their work so that it is visible and available to others.  However, 
in those systems the characteristics of each agent and the rules 
for their relationships to the memories are specified a priori 
[6,7].  In the proposed system the agent-memory cycles are 
evolved by including input space and output space decisions in 
the agents’ chromosomal representations (toMemory and 
fromMemory).  For the specific application of the Traveling 
Salesman Problem, only two memories were used: one for partial 
tours, or tours that do not contain all of the cities, and one for 
complete tours.  The tours in these memories can also be said to 
evolve over time – but through the genetically determined 
actions of the agents, rather than through recombination and 
mutation within the population of solutions as would occur in a 
typical genetic algorithm [31,32].  To prevent the overflow of 
memories, a simple quality-based destruction protocol has been 
used in preliminary studies that involves simply removing the 
worst solution in memory when a better solution is added.  This 
simple destruction protocol can easily be enhanced as well to 
incorporate additional parameters for destruction of solutions, 
such as those used in A-Teams [6,7]. 

Memories in EMAS may be defined by the problem 
independent characteristics of the solutions that are acceptable 
within each memory.  For example a “partial” solution in a 
layout problem would be one in which only some of the 
components have been placed, or one in which all components 
have been placed but constraints are violated.  The use of shared 
memories with such extendible definitions is one of the keys to 
utilizing EMAS in dynamic environments.  Consider a change in 
the problem formulation that involves the addition of a new 
variable – for instance, the addition of a new city in TSP which 
must be assigned a location in the tour.  This event would cause 
many approaches, such as genetic algorithms using fixed length 

chromosomes and cooperative co-evolution with a single 
population for each variable, to require a restart with the new 
parameters.  In EMAS, however, such a change results merely in 
a transfer of solutions from one memory to another – leaving the 
team of agents intact.  Thus the knowledge and strength of the 
currently evolved team is not lost when a change occurs.  
Changing the number of constraints in the problem results in a 
similar transfer between memories. 
 
5 Algorithm Description 

 
The EMAS algorithm simulates temporal asynchrony by 

dividing the overall process into discrete iterations.  Each 
iteration, all agents undergo activation, at which point they make 
decisions and perform actions based on their genetic sequence.  
The result of activation is the generation of a new solution by the 
agent.  Solutions are thus a byproduct of the evolution of the 
agents, and do not, as in a GA, undergo reproduction, mutation, 
and selection themselves.  The solutions do, however, provide a 
basis for increasing or decreasing an agents’ fitness.  In our 
preliminary work, evaluation of the agents is fairly simple – an 
increase in fitness is directly proportional to an increase in the 
average solution quality in memory brought about by the agent 
when it adds a new solution.  We are currently investigating 
more complex agent evaluation protocols. 

After all agents have been activated, reproduction occurs, in 
which parents are selected based on their fitness and new agents 
are created.  Reproduction and activation both involve a simple 
operator for mutation.  Finally, the agent community undergoes 
selection, where the weakest individuals (those with a low fitness 
value) are removed from the population.  In this section, each of 
these important functions is discussed in detail. 
 
5.1 Activation 

 
Each iteration, all agents are activated.  Activation results in 

the agents creating new solutions based on their genetic encoding 
for how to choose and manipulate a solution.  Because an agent’s 
fitness is directly influenced by the quality of the solution it 
creates at this time, activation is critical in driving the 
evolutionary process of the agents (strategies).  The cost 
associated with activation is an increase in the agent’s age, or 
number of activations.  As will be discussed in the Selection 
section, age influences the likelihood of an agent being destroyed 
or selected for reproduction.  Activation of an agent consists of 
verification that it is able to work and simulation and testing to 
determine if it will make a positive difference.  The verification 
step is performed because some memory-algorithm combinations 
are incompatible, which means there may be genetic ‘misfits’.  
For instance, a construction algorithm cannot be run on a 
complete tour, so if an agent’s strategy specifies that the agent 
both choose from the complete memory and utilize a 
construction algorithm, the agent cannot apply its strategy and is 
mutated.  Simulation, the process outlined in Fig. 2 by the dashed 
line, is performed so that agents will not place a solution that will 
decrease the average solution quality into their destination 
memory (toMemory).  This keeps the quality of solutions in the 
memory high because worse solutions are never added, though 
perhaps at the cost of diversity of solutions.  If an agent is unable 
to improve the average solution quality after n tries, the agent 
undergoes mutation, as described in the Mutation section, and its 
fitness is updated (decreased) to reflect its inability to contribute.  
For our implementation, 3=n .  If an agent is successful in 
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coming up with a solution that increases the average solution 
quality, it then inserts the new tour into its destination memory 
and its fitness is updated based on its contribution.  A flowchart 
of agent activation is shown in Fig. 2. 
 

 
 
Fig. 2 Flowchart of agent activation 
 
5.2 Mutation 
 

In the proposed framework, mutation is used for two purposes.  
The first purpose, common to most evolutionary and genetic 
algorithms, is to make the system more stochastic – mutation 
allows a more thorough exploration of the design space for 
individuals by introducing randomness into their creation.  Here, 
the “design space for individuals” is the strategy space – the 
collection of all possible strategies available to agents for 
creating new solutions – not to be confused with the design space 
of the problem.  As mentioned in the previous section, 
individuals may also mutate during activation if they are not 
being successful, which could be considered a simple form of 

Lamarckian learning in evolution.  This secondary mutation is a 
way of allowing individual agents to adapt to the problem 
environment by trying new decision methods, achieving diversity 
by variation.  Both types of mutation are random, meaning that a 
single randomly chosen bit is altered in the binary gene. 
 
5.3 Reproduction 
 

After activating each agent in an iteration, agents with a score 
above zero are randomly paired up as parents and allowed to 
reproduce. Each agent may only reproduce once in an iteration, 
and during reproduction is subjected to crossover with a 
randomly assigned partner at a single random crossover point.  
Recombination using single point crossover was the only method 
of reproduction considered in this preliminary study, though 
incorporation of others (see [33] for descriptions of other 
evolutionary operators) is possible as well.  This means that 
following reproduction, two children (agents embodying solution 
strategies) are created which contain reciprocal parts of their 
parents’ genetic string.  The resulting two children each have a 
50% chance of being mutated.  The initial fitness of the children 
is determined by activating them immediately after their creation. 
 
5.4 Selection 
 

When new agents are added through reproduction, the worst 
agents are selected from the population to be eliminated, keeping 
the population size constant.  Selection begins by sorting the 
agents by fitness with lowest on the bottom and highest on the 
top.  Fitness, as mentioned earlier, is based on the ability of the 
agent to make positive changes in its destination memory.  The 
amount of increase in an agent’s score after a single iteration is 
thus directly proportional to the percentage decrease in distance 
from optimal of the solution they have chosen.  Agents with the 
same fitness are further sorted by age, the oldest on the bottom 
and the youngest on the top.  Once sorting is complete, agents are 
removed from the bottom of the list (the oldest and worst 
performing) until the population is back to its original size. 
 
6 Results 
 
6.1 Comparison to Hybrid Algorithms 
 

The goal of this work, as stated in the introduction, is to 
understand how individuals’ strategies may evolve within a 
cooperative virtual team so that the team as a whole yields better 
solutions than any single individual’s strategy alone or a priori 
set team strategies.  We thus compared the resulting tours 
generated by EMAS to those generated by both individual 
algorithms on their own as well as a priori determined hybrid 
algorithms.  Each hybrid algorithm, which may be considered a 
more advanced strategy or a combination of strategies since no 
agent in EMAS runs more than a single algorithm, consisted of a 
construction algorithm followed by an improvement algorithm.  
Intuitively, and based on the No Free Lunch Theorem [34], we 
would expect EMAS to perform at least as well as the base 
algorithms, which it did.  In addition, though, the solution quality 
reached by EMAS was also consistently better than that reached 
by the hybrid algorithms.  Recall that less complex, heuristic 
algorithms were intentionally used to allow us to study the 
behavior of EMAS more closely and that producing the optimal 
solution to TSP was not the ultimate objective. 
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For the 48-city problem, EMAS was run 48 times and 
compared to the solutions resulting from running construction 
algorithms from each starting city and then running improvement 
algorithms on the resultant tours.  Each trial of EMAS consisted 
of 100 iterations with an agent team or population size of 10.  
Selection, reproduction, and mutation were performed at the end 
of each iteration and pre-processing indicated that solution 
quality generally converged before 100 iterations.  The same 
starting tour or city will always lead to the same final 
optimization solution after running any of the base construction 
or improvement algorithms presented (with the exception of 
arbitrary insertion).  By running all hybrid algorithms on every 
starting city we are attempting to provide a good approximation 

of the effectiveness of these hybrid strategies.  Table 2 indicates 
that, on average, the solution quality produced by EMAS is much 
better than that of the hybrid strategies.  In the table, the mean is 
taken over all trials and the value given for each trial of EMAS is 
the average solution quality in the complete memory at the end 
of that trial.  Similar results were found for the 532-city problem.   
The same procedure (running the hybrid algorithms on every 
starting city) was used for the 532-city problem, though EMAS 
was only run 50 times for 50 iterations each time because of its 
long computation time. Even so, the average solution quality of 
EMAS was still much better than any of the hybrid strategies for 
this more complex problem. 
 

 
Table 1 Mean distance (%) from optimum solution and standard deviation of hybrid algorithms compared to EMAS 

algorithm for 48- and 532-city problems 
 

Algorithm ATT48 ATT532

3-Opt + NI 3.2 ± 2.7 13.8 ± 3.6

3-Opt + FI 3.5 ± 1.5 10.5 ± 1.6

3-Opt + AI 3.1 ± 1.3 6.1 ± 1.3

2-Opt + NI 9.6 ± 2.3 23.4 ± 2.0

2-Opt + FI 6.7 ± 1.1 14.1 ± .6

2-Opt + AI 6.1 ± 2.1 8.2 ± 1.2

EMAS .7 ± .6 3.1 ± 1.6  
 

The consequence of this increased quality of solutions was 
computation time.  Because EMAS involves running several of 
the base algorithms each iteration (and because they are currently 
run synchronously rather than asynchronously), it is expected 
that the amount of time required to reach the solutions generated 
is much higher.  A single run of the hybrid nearest insertion 
followed by 3-Opt on any individual starting tour for ATT48 
would take less than a second, whereas a single trial of EMAS 
run on ATT48 for 100 iterations takes an average of around 8 
seconds.  However, no matter how many times a hybrid 
algorithm is run on the same starting city, it will always produce 
the same final tour (with the exception of arbitrary insertion), 
which as we have just shown for the hybrid algorithms is almost 
always worse than the result of the EMAS algorithm.  Also, 
EMAS will continue to improve the quality of solutions in the 
memory if the number of iterations is increased or made 
continuous (albeit at an ever decreasing rate), whereas once the 
hybrid algorithms exhaust their heuristic rules, they can no 
longer improve the solution even if improvement is possible. 

The evolutionary component of EMAS is the most likely 
culprit of the model’s long runtime.  However, just as is the case 
in the actual design process, we have shown that this element is 
crucial to the success of a cooperative team.  Without the benefit 
of the previous generations’ successes and failures, the team at 
each iteration is essentially a random collection of strategies.  So 
even when the same team size is used for the same number of 
iterations with the same cooperation scheme as EMAS, the lack 
of intelligence behind each iteration’s team strategy selection in 
the randomly assigned teams scenario will limit the scenario’s 
performance.  In Table 3, the results of such a random 
assignment of individual strategies are compared to EMAS.  As 
in the last row of Table 2, the first column in Table 3 is the mean 

taken over all trials where the value given for each trial 
corresponds to the average solution quality of the complete 
memory at the end of that trial. Computation time for EMAS is 
still inferior to the randomly assigned team, though to a much 
lesser extent than the comparison between EMAS and the hybrid 
algorithms.  The difference in computation time is undoubtedly a 
result of the selection, reproduction, and mutation processes 
which are performed at each iteration of EMAS.  However, the 
average solution quality of EMAS is more than 30% better than 
that of the randomly assigned teams, which can also be attributed 
to the use of evolutionary processes. 
 
Table 3 Comparison of EMAS to randomly generated team 
for ATT532 (averages of 50 trials) 
 

Mean distance (%) from 
optimal solution of average 
tour in complete memory

St. Dev. (%) Avg. Time (hrs)

Randomly 
Assigned Teams 12.6 0.8 4.3

EMAS 8.6 1.1 14.0
 

6.2 Utilizing Emergent Patterns 
 
We have just shown that randomly assigned teams do not yield 

the same caliber results as those obtained by EMAS.  Clearly, the 
evolutionary nature of strategy selection in EMAS is essential to 
the formation of higher-quality solutions in the cooperative 
multi-agent team.  In analyzing the behavior of the agent 
population over the course of several runs of EMAS, however, 
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we discovered patterns in the number of different types of agents 
flourishing in the agent community at various iterations.  These 
patterns emerged solely through the evolutionary processes of the 
agent population and were not the result of any external 
manipulation of the system.  Even averaging the team behavior 
of 1000 trials of EMAS on ATT48 and 25 trials of EMAS on 
ATT532 was not enough to conceal a defined peak of 
constructors in early iterations followed by a smaller peak of 
improvers in later iterations.  For example, in the 48-city 
problem (behavior shown in Fig. 3 (a) and (b)), at about the fifth 
iteration, the team is dominated by the construction algorithms 
nearest, farthest, and arbitrary insertion, with an average of 5.5 
out of 10 agents running one of these algorithms.  In the 532-city 
problem (behavior shown in Fig. 3 (c) and (d)) a similar peak in 
construction agents occurs around the 20th iteration, with more 
than 7 out of 10 agents on the team running either nearest, 
farthest, or arbitrary insertion. Following this initial constructor-

dominated team, the number of improvers peaks as well, around 
the 10th iteration for the 48-city problem and around the 50th 
iteration in the 532-city problem.  At this point, around 5 out of 
10 agents on the team in the 48-city problem and 6 out of 10 
agents on the team in the 532-city problem are running an 
improvement algorithm, mostly 3-Opt.  Eventually, after about 
40 iterations for ATT48 and almost 100 iterations for ATT532, 
averaging many trials leads to an approximately equal number of 
each type of agent in the team.  There is never a defined peak in 
the number of reducers in these trials, though their influence does 
seem to increase following the constructor peak.  This may 
suggest that their activity following the initial creation of 
solutions by the constructors is crucial to generating the fodder in 
the partial memories for further construction and improvement 
later. 
 

 
 

Fig. 3 Category and individual algorithm behavior for ATT48 (a and b) and for ATT532 (c and d) 
 
 

Though the exact reason for the patterns is unclear, it is easy to 
confirm whether or not those patterns have an effect on the 
quality of the solutions generated by the EMAS algorithm.  To 
do this, five individual trials of EMAS were run on ATT48 and 
the resulting distribution of agents was compared against the 
averages shown in Fig. 3.  To measure correlation between each 
trial and the average distribution, we used the following formula: 

 

... redimpconsttot cccc ++= ,      Equation 1 

 
Where .constc , .impc , and .redc  are correlation coefficients 

between the number of constructors, improvers, or reducers over 

the course of the sample trial and the average number of each in 
1000 trials over the same number of iterations.  In other words,  

 

( )( )
( ) ( )∑ ∑
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iter iter
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   Equation 

2  
 
Where  
 



 

MD-08-1167 8 Cagan 

• iterx  is the number of constructors, improvers, or 
reducers at a specific iteration in the sample trial,  

• x is the average number of constructors, improvers, or 
reducers over the course of the sample trial (100 
iterations),  

• iteravg  is the average number of constructors, 
improvers, or reducers found at a specific iteration in 
1000 trials of ATT48.  For example, according to Fig. 3 
(a), 8avg  for constructors and improvers is 
approximately 4.2, since both constructors and improvers 
represent 4.2 out of 10 agents in the team at the 8th 
iteration in the average of 1000 trials. 

• avg  is the average over all iterations of the number of 
constructors, improvers, or reducers found in the average 
of 1000 trials. 

 
Our results for relating total correlation coefficient to solution 

quality are shown in Fig. 4.  It was found that trials which 
correlated more strongly with the average patterns had better 
final values (in terms of distance from the optimal value of the 
average solution quality in the complete memory after 100 
iterations) than those that did not. 
 

 
 
Fig. 4 Total correlation coefficient of agent behavior to 
average of previous trials vs. solution quality for 5 new trials 
of EMAS on 48-city problem 
 

These results suggest that the EMAS algorithm may have 
potential as a predictive or learning tool.  The patterns discovered 
in many trials of EMAS may be exploited to achieve similar 
results without actually employing evolution, just as 
experimentation in [35] identified heuristic rules for cooling 
schedules in simulated annealing rather than costly analysis for 
temperature reduction.  In the current implementation of EMAS, 
computational runtime is expensive, especially as problem 
complexity increases.  Forcing conditions on a complex problem 
that for a less complex instance correlate to good solution quality 
requires less of a computational commitment than running the 
entire evolution on the more complex instance.  Thus it is 
possible that we may further decrease computation time while 
maintaining solution quality if EMAS is employed on a similar, 
less complex instance of a problem and its results extrapolated to 
a more complex instance.  To test this, the averaging results of 

the 48-city problem, given in Fig. 3 (a) and (b) were applied to a 
new cooperative but un-evolving agent team attempting the more 
complex 532-city problem.  In other words, rather than being 
influenced by the previous generation of agents, each iteration 
the probability of each agent having a particular strategy 
(algorithm, choice method, etc.) was guided by the results of the 
1000 trials of ATT48.   For example, at the 10th iteration in the 
new un-evolving team scenario, each agent had a 55% chance of 
employing a construction algorithm since averaging 1000 trials 
showed 5.5 agents out of 10 running construction algorithms at 
that iteration.  As in the randomly assigned teams scenario, the 
forced conditions scenario was run with the same team size and 
for the same number of iterations as EMAS, with the cooperation 
protocol maintained as well. The results of this experiment are 
given in Fig. 5 and compared to our previous results for both 
EMAS and the randomly ordered algorithms for the 532-city 
problem.  The y-axis represents, as in the earlier tables and Fig. 
4, the average of all trials, where the value given for each trial is 
the average solution quality in the complete memory at the end 
of the trial. 
 

 
 
Fig. 5 Comparison of computation time and solution quality 
of forced conditions scenario to randomly assigned teams 
scenario and EMAS 
 

As expected, forcing 48-city problem EMAS conditions on the 
agent population for a 532-city problem decreased computation 
time significantly from that of simply running EMAS on the 532-
city problem.  More surprising is that solution quality was 
maintained when forcing these conditions as well.  On average, 
the solution quality generated by forcing previously determined 
EMAS behavior conditions on the agent population was more 
than 50% better than the random assignment of strategies to 
agents each iteration.   

In addition to the 532 city problem, which from a landscape 
point of view is very similar to the 48 city problem, these 
patterns were also applied to a team solving a Euclidean 237 city 
problem modeled on a VLSI layout.  This 237 city problem is 
essentially a manufacturing planning problem where the “cities” 
represent locations for holes to be drilled and the objective is to 
minimize the distance traveled by the drill head.  In spite of the 
topological and cost function differences between this problem 
and the 48- and 532-city problems, results similar to those shown 
for the 532-city problem in Fig. 5 were found.  Forcing the 
conditions of the 48 city problem on the 237 city problem 
yielded solutions that were almost 70% better than those 
produced by randomly assigned teams and equivalent to 50 
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iterations of EMAS – but with a 30% reduction in the 
computation time of EMAS.  The fact that the TSP is so well 
defined and the constraints and objectives are so similar between 
the less complex 48-city problem and the more complex 237- and 
532-city problems may be partially responsible for the 
effectiveness of the extension of these patterns.  For some design 
problems, in which the topology, dimension, and size of the 
design space changes more drastically and unpredictably with 
increasing complexity, such extension may not be as fruitful.  
Additional research is needed to establish for certain the potential 
learning or predictive capability of EMAS for such problems. 
 
7 Potential Applications 
 

We have so far presented the core framework and 
methodology for utilizing an evolving virtual team of agents for 
adaptive optimization.  The framework is designed to be flexible 
enough to be effective even in dynamic environments, where the 
design space size, characteristics, and topography may be 
changing.  Such environments are common in many types of 
applications for which we expect the EMAS framework would 
be advantageous.  Three potential contributions of EMAS, 
applicable to many areas of engineering design, are 1) its ability 
to produce good solutions without the user having to fine-tune 
optimization parameters or even choose which algorithm to 
apply, 2) its potential as a prediction and learning tool for 
guiding the optimization process, and 3) its flexibility in the face 
of a constantly changing design space. Optimization problems 
where several algorithms are available and the parameters need 
to be set and adjusted due to the complexity of the problem are 
particularly appropriate for EMAS, especially if the environment 
is changing.  One such application is product layout, in which the 
number, size, and shape of components may change as the 
overall problem evolves, moving, for instance, from generally 
defined cubes to more complex geometries as more information 
becomes available.  Though several effective layout algorithms 
have been developed in recent years [36,37], important 
parameters for producing good solutions (such as step size, 
annealing and resolution schedule, etc.) are usually unknown 
initially and need to be fine tuned by the user based on the 
specific problem.  Another such application is the optimization of 
manufacturing processes for efficiency, cost, and energy usage, 
which has close ties to TSP and as mentioned in the previous 
section has been explored in this work.  

The EMAS virtual team of solution strategies cooperates and 
evolves over time, producing as a byproduct solutions of 
increasing quality, potentially even in the face of changing 
problem design space.  In addition, the knowledge gleaned from 
EMAS, as we showed in the previous section, may be used to 
predict or learn which parameters or algorithms should be used in 
the future on larger and more complex problems to decrease 
computation time. 
 
8 Summary and Future Work 

 
The results present a convincing argument for the evolution of 

agents in a cooperative virtual team at the population level.  The 
cooperative teams of individual strategies evolved to generate 
better solutions than both individual strategies alone and a priori 
set hybrid strategies.  It has been shown that the strength of the 
EMAS algorithm lies in its ability to evolve the best team of 
agents dynamically.  Removing the evolutionary element by 
randomly assigning strategies within a team has been shown to 

be inferior to the EMAS model.  We thus argue that the use of 
cooperative evolutionary agents to determine the best solution 
strategies dynamically is a strong approach to adaptive 
optimization.  Decentralizing the strategy selection process and 
allowing strategies, rather than solutions, to progress in an 
evolutionary manner means that a much broader range of design 
and optimization applications, including layout, scheduling, and 
manufacturing planning, can be confronted in the face of design 
space uncertainty and change.  Another strength of the EMAS 
algorithm is as a predictive or learning guide for which set of 
algorithms or strategies should or should not be employed and 
when.  Utilizing EMAS in this way, at least as seen on a static 
case of the TSP, has been shown to lower computation time 
while maintaining or even improving solution quality.   

In the future, our approach to adaptive optimization utilizing 
evolutionary multi-agent teams will be applied to engineering 
design optimization problems, and several extensions will be 
made.  A primary focus of additional future research will be in 
specifically addressing dynamic design environments – those in 
which the actual structure of the solution, or the number of 
variables in the design problem, may change over the course of 
optimization.  This extension to our preliminary work will 
provide an even more concrete example of the relevance of our 
research to engineering design applications in which flexibility to 
dynamic design environments is desired. 
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