

MD-08-1167 1 Cagan

Lindsay D. Hanna
 Department of Mechanical

Engineering
Carnegie Mellon University

Pittsburgh, PA. 15213

Jonathan Cagan
Department of Mechanical

Engineering
Carnegie Mellon University

Pittsburgh, PA. 15213
cagan@cmu.edu

Evolutionary Multi-Agent
Systems: An Adaptive and
Dynamic Approach to
Optimization

This paper explores the ability of a virtual team of specialized strategic software
agents to cooperate and evolve to adaptively search an optimization design space. Our
goal is to demonstrate and understand how such dynamically evolving teams may
search more effectively than any single agent or a priori set strategy. We present a core
framework and methodology which has potential applications in layout, scheduling,
manufacturing, and other engineering design areas. The communal agent team
organizational structure employed allows cooperation of agents through the products of
their work and creates an ever changing set of individual solutions for the agents to
work on. In addition, the organizational structure allows the framework to be adaptive
to changes in the design space that may occur during the optimization process. An
evolutionary approach is used, but evolution occurs at the strategic, rather than solution
level, where the strategies of agents in the team are the decisions for when and how to
choose and alter a solution, and the agents evolve over time. As an application of this
approach in a static domain, individual solutions are tours in the familiar combinatorial
optimization problem of the traveling salesman. With a constantly changing set of these
tours, the team, with each agent employing a different solution strategy, must evolve to
apply the solution strategies which are most useful given the solution set at any point in
the process. We discuss the extensions to our preliminary work that will make our
framework useful to the design and optimization community.

1 Introduction

True engineering design is a cooperative process in which

individuals with different areas of expertise coordinate their
efforts to develop the best solution to a given problem [1]. Such
problems, especially in the early stages of design, are often open-
ended, multi-modal, and even dynamic [2]. In industry,
individuals on a design team may be considered specialists
whose approaches for moving designs towards optimality are the
product of both their own and their predecessors’ experiences.
The effective application of each individual’s approach depends
not only on what the particular approach is, but also on how and
when it is employed based on the team’s progress. For example,
computational fluid dynamics or finite element analysis is not as
valuable early in the design process as back of the envelope
calculations and heuristic estimations. Together, the approach to
design improvement and the timing of its application can be
considered a strategy. We seek to understand how strategies
evolve in a cooperative virtual team so that the team as a whole
yields better designs than any single individual’s strategy alone
or a priori set team strategy.

This paper introduces EMAS – an Evolutionary Multi-Agent
System for adaptive optimization which employs the evolution of
design strategies within a cooperative virtual team. As is the
case in current engineering design processes, solution strategies
in EMAS evolve as conditions change and as new solution states

are discovered during the optimization process, so that the best
strategies are employed at the correct time. Evolution is not a
new concept in optimization and problem solving [3], but the use
of evolutionary processes is typically applied at the solution
level, rather than at the strategic level. In our framework, the
strategies for generating solutions are recombined, altered, and
removed by applying genetic operators that in typical genetic and
evolutionary algorithms are performed on individual solutions.
We also add a cooperative dimension to the evolutionary process,
which distinguishes our work as well from genetic and
evolutionary programming techniques. Cooperation between
design team individuals is modeled in our framework by
embodying each strategy in an autonomous agent and allowing
the population of agents to communicate. Communication
between agents involves the posting of working and completed
solutions to the design problem in communal or shared
databases. The team of agents navigates the design space
cooperatively as individuals apply genetically encoded
approaches for altering solutions contained in these databases
according to genetically encoded rules for when to do so. At the
same time, selection, mutation, and reproduction of agents in the
team allow strategies to evolve and adapt to the specific problem
and design space.

The evolution of cooperating solution strategies is presented in
this work to combat the problem of not knowing which strategy
to use in an unknown, but static design space. In our example,

MD-08-1167 2 Cagan

we use the familiar combinatorial optimization problem of the
traveling salesman. This problem has many extensions to design
in the areas of manufacturing process planning, routing, and
scheduling. It is a difficult problem to solve but is also so well
studied that many strategies have been developed and several
sample problems with known solutions are available. However,
the EMAS framework is also designed to be robust and flexible
in dynamic design spaces – those in which constraints,
objectives, even dimension and size of the problem are changing.
Changes in the design space are reflected in the shared databases
and are thus passed on to all agents indirectly without disrupting
the design process. Through both the evolution of the agents,
again embodying the strategies for generating solutions, and their
cooperation as a team, the best set of strategies for generating
solutions to a particular problem at each point in the optimization
process is created.

2 Background

2.1 Agent-Based Methods

We have chosen to represent strategies in this work as

autonomous software agents. Though the definition of “agent” is
a topic of some debate in the theoretical artificial intelligence
community (see Franklin and Graesser [4]), we define agents
here as entities which perceive their environment, in this case the
shared memories and solutions, and autonomously act upon that
environment through effectors. This definition is very similar to
those of Russell and Norvig [5] and De Souza [6].

EMAS follows in the footsteps of several other agent-based
approaches which have been very effective in optimization and
engineering design. Most notably, the structure of EMAS, with
shared memories or databases as the primary mode of
cooperation between algorithmic or strategic agents, is closest to
the concept of Asynchronous Teams (A-Teams) [6,7,8]. This
concept was also extended in the research of Campbell, Cagan,
and Kotovsky [1] for engineering design environments where
user preferences in multi-objective conceptual design problems
were changing. In the work of Olson and Cagan [2], the effect of
cooperation and coordination of design decisions in these
systems in the area of manufacturing process planning was
studied as well. Each of these approaches have proven that
agents with different abilities, cooperating on a common problem
can produce more and better solutions and designs than any
individual working independently. Our extension to these earlier
approaches is in the incorporation of the evolutionary process for
determining the best set or team of abilities for solving that
common problem. Instead of specifying the agents’ abilities and
strategies a priori, we allow these characteristics to emerge
naturally by subjecting the team to the processes of evolution.
Again, our goal is to study how these strategies emerge in a
dynamic virtual design team of cooperating but specialized
individuals.

2.2 Algorithm Portfolios

The population of agents in EMAS represents a set of
strategies for creating solutions. This population evolves as a
result of selective pressure on the strategies, or agents, to perform
better given the current problem definition and the set of
solutions in the memory. Similar motivation is employed in
algorithm selection [9], algorithm portfolios [10,11], meta-
learning [12] and other similar paradigms [13] which seek to

understand and exploit the (often unknown) properties of
algorithms that make them successful. Unlike many of these
approaches, in EMAS, each agent cooperates by working off of
the solutions created by other agents. In this way our work is
similar to that of Moral, Sahoo, and Dulikravich [14], in which a
single population of candidate solutions is transferred
automatically between different evolutionary algorithms, with
the criteria for switching between the algorithms specified a
priori. EMAS extends work in this area by making the agents
autonomous, capable of deciding on their own when to affect
which solution or solutions. Thus rather than automatic selection
of the best algorithm or set of algorithms at an appropriate time
by an external “manager”, the choice is distributed among the
agents (or algorithms). This means that instead of having to tune
global parameters for switching between algorithms or agents,
such as a function for online time allotment to each algorithm
[15] or amount of improvement necessary to continue running an
algorithm, these decisions can be made and updated locally. Not
only that, the decision making criteria can change over time to
adapt to new environmental conditions as the agent population
evolves.

2.3 Evolutionary Computing

The fact that strategies, embodied in agents, evolve over time
makes EMAS an extension of evolutionary computation
[16,17,18] as well. The individuals in EMAS are agents, which
again correspond to solution strategies - methods of choosing and
transforming solutions in the shared memories. EMAS has
several advantages associated with the evolutionary computation
areas of genetic and evolutionary programming – namely that a
fixed string or complex representation of the solution is not
necessary [19]. The extension of EMAS in the area of
evolutionary and genetic programming comes from the
incorporation of cooperation between individuals in the
population. Though cooperation has been considered between
multiple related populations in cooperative co-evolution [20],
few have considered or exploited cooperation within the same
population. One exception is the work of Cristea, Arsene, and
Nitulescu [21], which explores the concept of an evolving
population of sensorimotor agents navigating in a changing 2D
world. EMAS abstracts concepts from this research as well for
the more complex interaction of agents needed for engineering
design with EMAS. A summary of the placement of EMAS in
terms of the related literature can be seen in Table 1.

MD-08-1167 3 Cagan

Table 1 Placement of EMAS in relation to relevant evolutionary computing concepts and literature

Individual Multiple Populations? Cooperation

Genetic/Evolutionary Algorithms Solution No None
Genetic/Evolutionary Programming Solution strategy No None
Cooperative Co-evolution Partial solution Yes Between populations
Evolutionary Multi-Agent Systems Solution strategy (Agent) No Between individuals

3 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) was chosen as an
application for the proposed framework because it is such a well
known and straightforwardly defined problem with extensions to
the engineering areas of planning and scheduling. However, the
goal of this work is not to present an algorithm which solves the
TSP better than any other algorithm thus far. Instead, we wish to
illustrate through a well studied example problem that our
framework is capable of increasing the effectiveness of
individual solution strategies by evolving and coordinating them
in a decentralized manner. The objective of the TSP is, given a
set of cities and a cost function associated with traveling between
each pair of cities, to find the round trip tour with the lowest cost
that visits each city once and only once. For the problems we
will explore in this paper, the cost, or distance, function between
cities is a ‘pseudo-euclidean’ function described by Padberg and
Rinaldi [22]. However, extension of the TSP to engineering
design applications such as scheduling and manufacturing
planning can be accomplished by utilizing different cost or
distance functions.

Simple, heuristic algorithms for solving TSP were
intentionally used in place of more powerful ones like the
Concorde TSP solver [23,24] so that the inner workings of the
EMAS team and its ability to create solutions superior to those
created by individuals could be studied more easily. There is
another reason for this choice as well: as design problems
become more and more complex, the algorithms and tools for
solving them become similarly complex and the conditions under
which those tools are successful are often unknown. Though the
simultaneous search of both strategy and solution space may
seem unnecessary, it avoids a posteriori fine tuning of
parameters and assumptions of the design space characteristics
that can plague other more centralized optimization approaches.
By showing that the bi-level approach is effective at producing
good solutions even when the algorithms and methods used are
not the ‘best’, we are also able to provide designers with an
alternative to trial and error experimentation with multiple
algorithms as more complex problems are encountered.

The algorithms chosen fall into three categories: construction,
improvement, and reduction. Construction algorithms are so
named because they take, as input, an incomplete or partial tour
and return either a complete tour or a longer partial tour after
adding cities in a predefined, heuristic manner. For this study
three simple heuristic construction algorithms, nearest insertion,
farthest insertion, and arbitrary insertion, were used (for
descriptions of these algorithms, the reader is referred to Golden
and Stewart [25]). Improvement algorithms, as their name would
suggest, improve an existing partial or complete tour by
rearranging the order of the cities in the tour based on different
rules. There were three heuristic-based improvement algorithms

used in this study, 2-Opt [26], 3-Opt [27], and simple mutation
(city swapping). Reduction algorithms break down complete
tours into partial tours. In this work, two very basic heuristic
reduction algorithms are employed. The first of these is random
reduction, which involves randomly removing a random number
of cities in the tour. Best partial reduction, the second reduction
algorithm, returns the best partial tour (the tour with the shortest
average leg length) containing half of the total number of cities
in the same consecutive order as the original tour.

4 Methodology

4.1 Evolutionary Agents

To perform genetic operations such as crossover and mutation,
we have chosen to represent EMAS agents, again embodying
strategies, as binary strings. Other representations abound in the
evolutionary computation literature, see Rothlauf [28] and Deb
[29], but binary is generally regarded as the simplest
representation for individuals. The binary string, or
chromosome, defining an individual agent in the evolving team
of the proposed framework represents the decisions the agent
will make in its lifetime, in other words, its behavior. We argue
that decisions should be the primary element of an agent’s
genetic makeup because autonomy, the ability of an agent to
make decisions on its own without being told what to do, is
essential to the definition of an agent [7,30]. For the particular
application of the TSP, agent decisions were defined as follows:

1. From what memory will a tour be chosen,
2. Which tour from that memory will be worked on,
3. How will the chosen tour be worked on (i.e. which

algorithm will be run), and
4. Where (which memory) will the new tour be put once work

is completed on it.

Thus, the chromosome of each agent consists of four binary

genes identifying these properties (see Fig. 1). It is important to
reiterate that unlike typical genetic algorithms, these gene strings
represent agents’ strategies for generating solutions, not the
solutions themselves. The choice method defines the tour
characteristics which will make an agent more or less likely to
choose that tour, i.e. if the agent will choose the best tour, the
worst tour, be biased towards better tours, or be biased towards
worse tours. These choice methods may be made more complex
as well by increasing the gene length or representation to include
reference to specific characteristics of a solution which make it
more or less attractive to an agent. Note also that incorporating
more complex or powerful algorithms into EMAS is simply a
matter of changing the encoding paradigm for the algorithm
gene, for instance by increasing the number of bits to describe

MD-08-1167 4 Cagan

the algorithm. In addition, the gene could be lengthened to
describe additional parameters of algorithms which we would
prefer not to specify a priori, such as how many iterations to run,
convergence criteria, etc. This could be particularly useful in
design problems where multiple algorithms or heuristics may be
available but where the parameter specification greatly affects
algorithm performance on particular problem classes. The
significance of the memories will be discussed in the next
section.

Fig. 1 Structure of proposed EMAS agent chromosome

4.2 Agent Organization: Creating an Evolutionary Multi-Agent
Team

The agent system architecture developed is similar to the

asynchronous team architecture developed by [8] in that it
incorporates the idea of shared memories, which allow agents to
cooperate indirectly by providing a place for agents to present
their work so that it is visible and available to others. However,
in those systems the characteristics of each agent and the rules
for their relationships to the memories are specified a priori
[6,7]. In the proposed system the agent-memory cycles are
evolved by including input space and output space decisions in
the agents’ chromosomal representations (toMemory and
fromMemory). For the specific application of the Traveling
Salesman Problem, only two memories were used: one for partial
tours, or tours that do not contain all of the cities, and one for
complete tours. The tours in these memories can also be said to
evolve over time – but through the genetically determined
actions of the agents, rather than through recombination and
mutation within the population of solutions as would occur in a
typical genetic algorithm [31,32]. To prevent the overflow of
memories, a simple quality-based destruction protocol has been
used in preliminary studies that involves simply removing the
worst solution in memory when a better solution is added. This
simple destruction protocol can easily be enhanced as well to
incorporate additional parameters for destruction of solutions,
such as those used in A-Teams [6,7].

Memories in EMAS may be defined by the problem
independent characteristics of the solutions that are acceptable
within each memory. For example a “partial” solution in a
layout problem would be one in which only some of the
components have been placed, or one in which all components
have been placed but constraints are violated. The use of shared
memories with such extendible definitions is one of the keys to
utilizing EMAS in dynamic environments. Consider a change in
the problem formulation that involves the addition of a new
variable – for instance, the addition of a new city in TSP which
must be assigned a location in the tour. This event would cause
many approaches, such as genetic algorithms using fixed length

chromosomes and cooperative co-evolution with a single
population for each variable, to require a restart with the new
parameters. In EMAS, however, such a change results merely in
a transfer of solutions from one memory to another – leaving the
team of agents intact. Thus the knowledge and strength of the
currently evolved team is not lost when a change occurs.
Changing the number of constraints in the problem results in a
similar transfer between memories.

5 Algorithm Description

The EMAS algorithm simulates temporal asynchrony by

dividing the overall process into discrete iterations. Each
iteration, all agents undergo activation, at which point they make
decisions and perform actions based on their genetic sequence.
The result of activation is the generation of a new solution by the
agent. Solutions are thus a byproduct of the evolution of the
agents, and do not, as in a GA, undergo reproduction, mutation,
and selection themselves. The solutions do, however, provide a
basis for increasing or decreasing an agents’ fitness. In our
preliminary work, evaluation of the agents is fairly simple – an
increase in fitness is directly proportional to an increase in the
average solution quality in memory brought about by the agent
when it adds a new solution. We are currently investigating
more complex agent evaluation protocols.

After all agents have been activated, reproduction occurs, in
which parents are selected based on their fitness and new agents
are created. Reproduction and activation both involve a simple
operator for mutation. Finally, the agent community undergoes
selection, where the weakest individuals (those with a low fitness
value) are removed from the population. In this section, each of
these important functions is discussed in detail.

5.1 Activation

Each iteration, all agents are activated. Activation results in

the agents creating new solutions based on their genetic encoding
for how to choose and manipulate a solution. Because an agent’s
fitness is directly influenced by the quality of the solution it
creates at this time, activation is critical in driving the
evolutionary process of the agents (strategies). The cost
associated with activation is an increase in the agent’s age, or
number of activations. As will be discussed in the Selection
section, age influences the likelihood of an agent being destroyed
or selected for reproduction. Activation of an agent consists of
verification that it is able to work and simulation and testing to
determine if it will make a positive difference. The verification
step is performed because some memory-algorithm combinations
are incompatible, which means there may be genetic ‘misfits’.
For instance, a construction algorithm cannot be run on a
complete tour, so if an agent’s strategy specifies that the agent
both choose from the complete memory and utilize a
construction algorithm, the agent cannot apply its strategy and is
mutated. Simulation, the process outlined in Fig. 2 by the dashed
line, is performed so that agents will not place a solution that will
decrease the average solution quality into their destination
memory (toMemory). This keeps the quality of solutions in the
memory high because worse solutions are never added, though
perhaps at the cost of diversity of solutions. If an agent is unable
to improve the average solution quality after n tries, the agent
undergoes mutation, as described in the Mutation section, and its
fitness is updated (decreased) to reflect its inability to contribute.
For our implementation, 3=n . If an agent is successful in

MD-08-1167 5 Cagan

coming up with a solution that increases the average solution
quality, it then inserts the new tour into its destination memory
and its fitness is updated based on its contribution. A flowchart
of agent activation is shown in Fig. 2.

Fig. 2 Flowchart of agent activation

5.2 Mutation

In the proposed framework, mutation is used for two purposes.
The first purpose, common to most evolutionary and genetic
algorithms, is to make the system more stochastic – mutation
allows a more thorough exploration of the design space for
individuals by introducing randomness into their creation. Here,
the “design space for individuals” is the strategy space – the
collection of all possible strategies available to agents for
creating new solutions – not to be confused with the design space
of the problem. As mentioned in the previous section,
individuals may also mutate during activation if they are not
being successful, which could be considered a simple form of

Lamarckian learning in evolution. This secondary mutation is a
way of allowing individual agents to adapt to the problem
environment by trying new decision methods, achieving diversity
by variation. Both types of mutation are random, meaning that a
single randomly chosen bit is altered in the binary gene.

5.3 Reproduction

After activating each agent in an iteration, agents with a score
above zero are randomly paired up as parents and allowed to
reproduce. Each agent may only reproduce once in an iteration,
and during reproduction is subjected to crossover with a
randomly assigned partner at a single random crossover point.
Recombination using single point crossover was the only method
of reproduction considered in this preliminary study, though
incorporation of others (see [33] for descriptions of other
evolutionary operators) is possible as well. This means that
following reproduction, two children (agents embodying solution
strategies) are created which contain reciprocal parts of their
parents’ genetic string. The resulting two children each have a
50% chance of being mutated. The initial fitness of the children
is determined by activating them immediately after their creation.

5.4 Selection

When new agents are added through reproduction, the worst
agents are selected from the population to be eliminated, keeping
the population size constant. Selection begins by sorting the
agents by fitness with lowest on the bottom and highest on the
top. Fitness, as mentioned earlier, is based on the ability of the
agent to make positive changes in its destination memory. The
amount of increase in an agent’s score after a single iteration is
thus directly proportional to the percentage decrease in distance
from optimal of the solution they have chosen. Agents with the
same fitness are further sorted by age, the oldest on the bottom
and the youngest on the top. Once sorting is complete, agents are
removed from the bottom of the list (the oldest and worst
performing) until the population is back to its original size.

6 Results

6.1 Comparison to Hybrid Algorithms

The goal of this work, as stated in the introduction, is to
understand how individuals’ strategies may evolve within a
cooperative virtual team so that the team as a whole yields better
solutions than any single individual’s strategy alone or a priori
set team strategies. We thus compared the resulting tours
generated by EMAS to those generated by both individual
algorithms on their own as well as a priori determined hybrid
algorithms. Each hybrid algorithm, which may be considered a
more advanced strategy or a combination of strategies since no
agent in EMAS runs more than a single algorithm, consisted of a
construction algorithm followed by an improvement algorithm.
Intuitively, and based on the No Free Lunch Theorem [34], we
would expect EMAS to perform at least as well as the base
algorithms, which it did. In addition, though, the solution quality
reached by EMAS was also consistently better than that reached
by the hybrid algorithms. Recall that less complex, heuristic
algorithms were intentionally used to allow us to study the
behavior of EMAS more closely and that producing the optimal
solution to TSP was not the ultimate objective.

MD-08-1167 6 Cagan

For the 48-city problem, EMAS was run 48 times and
compared to the solutions resulting from running construction
algorithms from each starting city and then running improvement
algorithms on the resultant tours. Each trial of EMAS consisted
of 100 iterations with an agent team or population size of 10.
Selection, reproduction, and mutation were performed at the end
of each iteration and pre-processing indicated that solution
quality generally converged before 100 iterations. The same
starting tour or city will always lead to the same final
optimization solution after running any of the base construction
or improvement algorithms presented (with the exception of
arbitrary insertion). By running all hybrid algorithms on every
starting city we are attempting to provide a good approximation

of the effectiveness of these hybrid strategies. Table 2 indicates
that, on average, the solution quality produced by EMAS is much
better than that of the hybrid strategies. In the table, the mean is
taken over all trials and the value given for each trial of EMAS is
the average solution quality in the complete memory at the end
of that trial. Similar results were found for the 532-city problem.
The same procedure (running the hybrid algorithms on every
starting city) was used for the 532-city problem, though EMAS
was only run 50 times for 50 iterations each time because of its
long computation time. Even so, the average solution quality of
EMAS was still much better than any of the hybrid strategies for
this more complex problem.

Table 1 Mean distance (%) from optimum solution and standard deviation of hybrid algorithms compared to EMAS

algorithm for 48- and 532-city problems

Algorithm ATT48 ATT532

3-Opt + NI 3.2 ± 2.7 13.8 ± 3.6

3-Opt + FI 3.5 ± 1.5 10.5 ± 1.6

3-Opt + AI 3.1 ± 1.3 6.1 ± 1.3

2-Opt + NI 9.6 ± 2.3 23.4 ± 2.0

2-Opt + FI 6.7 ± 1.1 14.1 ± .6

2-Opt + AI 6.1 ± 2.1 8.2 ± 1.2

EMAS .7 ± .6 3.1 ± 1.6

The consequence of this increased quality of solutions was
computation time. Because EMAS involves running several of
the base algorithms each iteration (and because they are currently
run synchronously rather than asynchronously), it is expected
that the amount of time required to reach the solutions generated
is much higher. A single run of the hybrid nearest insertion
followed by 3-Opt on any individual starting tour for ATT48
would take less than a second, whereas a single trial of EMAS
run on ATT48 for 100 iterations takes an average of around 8
seconds. However, no matter how many times a hybrid
algorithm is run on the same starting city, it will always produce
the same final tour (with the exception of arbitrary insertion),
which as we have just shown for the hybrid algorithms is almost
always worse than the result of the EMAS algorithm. Also,
EMAS will continue to improve the quality of solutions in the
memory if the number of iterations is increased or made
continuous (albeit at an ever decreasing rate), whereas once the
hybrid algorithms exhaust their heuristic rules, they can no
longer improve the solution even if improvement is possible.

The evolutionary component of EMAS is the most likely
culprit of the model’s long runtime. However, just as is the case
in the actual design process, we have shown that this element is
crucial to the success of a cooperative team. Without the benefit
of the previous generations’ successes and failures, the team at
each iteration is essentially a random collection of strategies. So
even when the same team size is used for the same number of
iterations with the same cooperation scheme as EMAS, the lack
of intelligence behind each iteration’s team strategy selection in
the randomly assigned teams scenario will limit the scenario’s
performance. In Table 3, the results of such a random
assignment of individual strategies are compared to EMAS. As
in the last row of Table 2, the first column in Table 3 is the mean

taken over all trials where the value given for each trial
corresponds to the average solution quality of the complete
memory at the end of that trial. Computation time for EMAS is
still inferior to the randomly assigned team, though to a much
lesser extent than the comparison between EMAS and the hybrid
algorithms. The difference in computation time is undoubtedly a
result of the selection, reproduction, and mutation processes
which are performed at each iteration of EMAS. However, the
average solution quality of EMAS is more than 30% better than
that of the randomly assigned teams, which can also be attributed
to the use of evolutionary processes.

Table 3 Comparison of EMAS to randomly generated team
for ATT532 (averages of 50 trials)

Mean distance (%) from
optimal solution of average
tour in complete memory

St. Dev. (%) Avg. Time (hrs)

Randomly
Assigned Teams 12.6 0.8 4.3

EMAS 8.6 1.1 14.0

6.2 Utilizing Emergent Patterns

We have just shown that randomly assigned teams do not yield

the same caliber results as those obtained by EMAS. Clearly, the
evolutionary nature of strategy selection in EMAS is essential to
the formation of higher-quality solutions in the cooperative
multi-agent team. In analyzing the behavior of the agent
population over the course of several runs of EMAS, however,

MD-08-1167 7 Cagan

we discovered patterns in the number of different types of agents
flourishing in the agent community at various iterations. These
patterns emerged solely through the evolutionary processes of the
agent population and were not the result of any external
manipulation of the system. Even averaging the team behavior
of 1000 trials of EMAS on ATT48 and 25 trials of EMAS on
ATT532 was not enough to conceal a defined peak of
constructors in early iterations followed by a smaller peak of
improvers in later iterations. For example, in the 48-city
problem (behavior shown in Fig. 3 (a) and (b)), at about the fifth
iteration, the team is dominated by the construction algorithms
nearest, farthest, and arbitrary insertion, with an average of 5.5
out of 10 agents running one of these algorithms. In the 532-city
problem (behavior shown in Fig. 3 (c) and (d)) a similar peak in
construction agents occurs around the 20th iteration, with more
than 7 out of 10 agents on the team running either nearest,
farthest, or arbitrary insertion. Following this initial constructor-

dominated team, the number of improvers peaks as well, around
the 10th iteration for the 48-city problem and around the 50th
iteration in the 532-city problem. At this point, around 5 out of
10 agents on the team in the 48-city problem and 6 out of 10
agents on the team in the 532-city problem are running an
improvement algorithm, mostly 3-Opt. Eventually, after about
40 iterations for ATT48 and almost 100 iterations for ATT532,
averaging many trials leads to an approximately equal number of
each type of agent in the team. There is never a defined peak in
the number of reducers in these trials, though their influence does
seem to increase following the constructor peak. This may
suggest that their activity following the initial creation of
solutions by the constructors is crucial to generating the fodder in
the partial memories for further construction and improvement
later.

Fig. 3 Category and individual algorithm behavior for ATT48 (a and b) and for ATT532 (c and d)

Though the exact reason for the patterns is unclear, it is easy to
confirm whether or not those patterns have an effect on the
quality of the solutions generated by the EMAS algorithm. To
do this, five individual trials of EMAS were run on ATT48 and
the resulting distribution of agents was compared against the
averages shown in Fig. 3. To measure correlation between each
trial and the average distribution, we used the following formula:

... redimpconsttot cccc ++= , Equation 1

Where .constc , .impc , and .redc are correlation coefficients

between the number of constructors, improvers, or reducers over

the course of the sample trial and the average number of each in
1000 trials over the same number of iterations. In other words,

()()
() ()∑ ∑

∑

−−

−−
=

iter iter
iteriter

iter
iteriter

avgavgxx

avgavgxx
c

22
 Equation

2

Where

MD-08-1167 8 Cagan

• iterx is the number of constructors, improvers, or
reducers at a specific iteration in the sample trial,

• x is the average number of constructors, improvers, or
reducers over the course of the sample trial (100
iterations),

• iteravg is the average number of constructors,
improvers, or reducers found at a specific iteration in
1000 trials of ATT48. For example, according to Fig. 3
(a), 8avg for constructors and improvers is
approximately 4.2, since both constructors and improvers
represent 4.2 out of 10 agents in the team at the 8th
iteration in the average of 1000 trials.

• avg is the average over all iterations of the number of
constructors, improvers, or reducers found in the average
of 1000 trials.

Our results for relating total correlation coefficient to solution

quality are shown in Fig. 4. It was found that trials which
correlated more strongly with the average patterns had better
final values (in terms of distance from the optimal value of the
average solution quality in the complete memory after 100
iterations) than those that did not.

Fig. 4 Total correlation coefficient of agent behavior to
average of previous trials vs. solution quality for 5 new trials
of EMAS on 48-city problem

These results suggest that the EMAS algorithm may have
potential as a predictive or learning tool. The patterns discovered
in many trials of EMAS may be exploited to achieve similar
results without actually employing evolution, just as
experimentation in [35] identified heuristic rules for cooling
schedules in simulated annealing rather than costly analysis for
temperature reduction. In the current implementation of EMAS,
computational runtime is expensive, especially as problem
complexity increases. Forcing conditions on a complex problem
that for a less complex instance correlate to good solution quality
requires less of a computational commitment than running the
entire evolution on the more complex instance. Thus it is
possible that we may further decrease computation time while
maintaining solution quality if EMAS is employed on a similar,
less complex instance of a problem and its results extrapolated to
a more complex instance. To test this, the averaging results of

the 48-city problem, given in Fig. 3 (a) and (b) were applied to a
new cooperative but un-evolving agent team attempting the more
complex 532-city problem. In other words, rather than being
influenced by the previous generation of agents, each iteration
the probability of each agent having a particular strategy
(algorithm, choice method, etc.) was guided by the results of the
1000 trials of ATT48. For example, at the 10th iteration in the
new un-evolving team scenario, each agent had a 55% chance of
employing a construction algorithm since averaging 1000 trials
showed 5.5 agents out of 10 running construction algorithms at
that iteration. As in the randomly assigned teams scenario, the
forced conditions scenario was run with the same team size and
for the same number of iterations as EMAS, with the cooperation
protocol maintained as well. The results of this experiment are
given in Fig. 5 and compared to our previous results for both
EMAS and the randomly ordered algorithms for the 532-city
problem. The y-axis represents, as in the earlier tables and Fig.
4, the average of all trials, where the value given for each trial is
the average solution quality in the complete memory at the end
of the trial.

Fig. 5 Comparison of computation time and solution quality
of forced conditions scenario to randomly assigned teams
scenario and EMAS

As expected, forcing 48-city problem EMAS conditions on the
agent population for a 532-city problem decreased computation
time significantly from that of simply running EMAS on the 532-
city problem. More surprising is that solution quality was
maintained when forcing these conditions as well. On average,
the solution quality generated by forcing previously determined
EMAS behavior conditions on the agent population was more
than 50% better than the random assignment of strategies to
agents each iteration.

In addition to the 532 city problem, which from a landscape
point of view is very similar to the 48 city problem, these
patterns were also applied to a team solving a Euclidean 237 city
problem modeled on a VLSI layout. This 237 city problem is
essentially a manufacturing planning problem where the “cities”
represent locations for holes to be drilled and the objective is to
minimize the distance traveled by the drill head. In spite of the
topological and cost function differences between this problem
and the 48- and 532-city problems, results similar to those shown
for the 532-city problem in Fig. 5 were found. Forcing the
conditions of the 48 city problem on the 237 city problem
yielded solutions that were almost 70% better than those
produced by randomly assigned teams and equivalent to 50

MD-08-1167 9 Cagan

iterations of EMAS – but with a 30% reduction in the
computation time of EMAS. The fact that the TSP is so well
defined and the constraints and objectives are so similar between
the less complex 48-city problem and the more complex 237- and
532-city problems may be partially responsible for the
effectiveness of the extension of these patterns. For some design
problems, in which the topology, dimension, and size of the
design space changes more drastically and unpredictably with
increasing complexity, such extension may not be as fruitful.
Additional research is needed to establish for certain the potential
learning or predictive capability of EMAS for such problems.

7 Potential Applications

We have so far presented the core framework and
methodology for utilizing an evolving virtual team of agents for
adaptive optimization. The framework is designed to be flexible
enough to be effective even in dynamic environments, where the
design space size, characteristics, and topography may be
changing. Such environments are common in many types of
applications for which we expect the EMAS framework would
be advantageous. Three potential contributions of EMAS,
applicable to many areas of engineering design, are 1) its ability
to produce good solutions without the user having to fine-tune
optimization parameters or even choose which algorithm to
apply, 2) its potential as a prediction and learning tool for
guiding the optimization process, and 3) its flexibility in the face
of a constantly changing design space. Optimization problems
where several algorithms are available and the parameters need
to be set and adjusted due to the complexity of the problem are
particularly appropriate for EMAS, especially if the environment
is changing. One such application is product layout, in which the
number, size, and shape of components may change as the
overall problem evolves, moving, for instance, from generally
defined cubes to more complex geometries as more information
becomes available. Though several effective layout algorithms
have been developed in recent years [36,37], important
parameters for producing good solutions (such as step size,
annealing and resolution schedule, etc.) are usually unknown
initially and need to be fine tuned by the user based on the
specific problem. Another such application is the optimization of
manufacturing processes for efficiency, cost, and energy usage,
which has close ties to TSP and as mentioned in the previous
section has been explored in this work.

The EMAS virtual team of solution strategies cooperates and
evolves over time, producing as a byproduct solutions of
increasing quality, potentially even in the face of changing
problem design space. In addition, the knowledge gleaned from
EMAS, as we showed in the previous section, may be used to
predict or learn which parameters or algorithms should be used in
the future on larger and more complex problems to decrease
computation time.

8 Summary and Future Work

The results present a convincing argument for the evolution of

agents in a cooperative virtual team at the population level. The
cooperative teams of individual strategies evolved to generate
better solutions than both individual strategies alone and a priori
set hybrid strategies. It has been shown that the strength of the
EMAS algorithm lies in its ability to evolve the best team of
agents dynamically. Removing the evolutionary element by
randomly assigning strategies within a team has been shown to

be inferior to the EMAS model. We thus argue that the use of
cooperative evolutionary agents to determine the best solution
strategies dynamically is a strong approach to adaptive
optimization. Decentralizing the strategy selection process and
allowing strategies, rather than solutions, to progress in an
evolutionary manner means that a much broader range of design
and optimization applications, including layout, scheduling, and
manufacturing planning, can be confronted in the face of design
space uncertainty and change. Another strength of the EMAS
algorithm is as a predictive or learning guide for which set of
algorithms or strategies should or should not be employed and
when. Utilizing EMAS in this way, at least as seen on a static
case of the TSP, has been shown to lower computation time
while maintaining or even improving solution quality.

In the future, our approach to adaptive optimization utilizing
evolutionary multi-agent teams will be applied to engineering
design optimization problems, and several extensions will be
made. A primary focus of additional future research will be in
specifically addressing dynamic design environments – those in
which the actual structure of the solution, or the number of
variables in the design problem, may change over the course of
optimization. This extension to our preliminary work will
provide an even more concrete example of the relevance of our
research to engineering design applications in which flexibility to
dynamic design environments is desired.

Acknowledgements

This research was sponsored by the Air Force Office of
Scientific Research, Air Force Material Command, USAF, under
grant number FA95500710225. The U.S. Government is
authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
AFOSR or the U.S. Government.

References
[1] Campbell, M.I., J. Cagan, K. Kotovsky, 1999. “A-Design:

An Agent-Based Approach to Conceptual Design in a
Dynamic Environment,” Research in Engineering Design
11(3): 172-192.

[2] Olson, J. T., and J. Cagan, 2004. “Inter-Agent Ties in
Computational Configuration Design”, Artificial
Intelligence in Engineering Design, Analysis and
Manufacturing, (Special Issue on Agent-Based Design),
18(2):135-152.

[3] Branke, J. 2002. Evolutionary Optimization in Dynamic
Environments. Kluwer Academic Publishers, Norwell,
MA.

[4] Franklin, S. and A. Graesser, 1997. “Is it an agent, or just a
program?: A taxonomy for autonomous agents,” Lecture
Notes in Computer Science 1193: 21-35.

[5] Russell, S.J. and P. Norvig, 1995. Artificial Intelligence: A
Modern Approach. Prentice Hall.

[6] De Souza, P.S. 1993. “Asynchronous Organizations for
Multi-Algorithm Problems” Ph.D. Dissertation, Carnegie
Mellon University, Department of Electrical and Computer
Engineering.

[7] Sachdev, S. 1998. “Explorations in Asynchronous Teams”
Ph.D. Dissertation, Carnegie Mellon University,
Department of Electrical and Computer Engineering.

MD-08-1167 10 Cagan

[8] Talukdar, S., L. Baerentzen, A. Gove, P. De Souza. 1998.
“Asynchronous Teams: Cooperation Schemes for
Autonomous Agents”. Journal of Heuristics, 4: 295-321.

[9] Rice, J.R. 1976. “The Algorithm Selection Problem,” in M.
Rubinoff and M.C. Yovitz, eds. Advances in Computers
15: 65-118.

[10] Gomes, C.P., B. Selman. 2001. “Algorithm Portfolios”
Artificial Intelligence. 126: 43-62.

[11] Nudelman, E., G. Andrew, J. Mcfadden, K. Leyton-Brown,
Y. Shoham, 2003. “A portfolio approach to algorithm
selection,” Proc. IJCAI-03, 18th Int’l. Joint Conf. on
Artificial Intelligence.

[12] Giraud-Carrier, C., R. Vilalta, P. Brazdil, 2004.
“Introduction to the special issue on meta-learning,”
Machine Learning, 54(3): 187-193.

[13] Schmidhuber, J. 2004. “Optimal Ordered Problem
Solving,” Machine Learning 54(3): 211-254.

[14] Moral, R.J., D. Sahoo, G.S. Dulikravich, 2006. “Multi-
Objective Hybrid Evolutionary Optimization with
Automatic Switching,” 11th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference.

[15] Gagliolo, M. and J. Schmidhuber. 2007. “Learning
Dynamic Algorithm Portfolios,” Technical Report No.
IDSIA-02-07.

[16] Back, T., D.B. Fogel, Z. Michalewicz, eds. 2000.
Evolutionary Computation 1. Institute of Physics
Publishing.

[17] T. Back, D.B. Fogel, Z. Michalewicz, eds. 2000.
Evolutionary Computation 2. Institute of Physics
Publishing.

[18] Fogel, D.B. 2000. “What is Evolutionary Computation?”
IEEE Spectrum.

[19] Koza, J.R. 1992. Genetic Programming: On the
programming of computers by means of natural selection.
MIT Press.

[20] Potter, M.A. and K.A. De Jong, 2000. “Cooperative
Coevolution: An Architecture for Evolving Coadapted
Subcomponents,” Evolutionary Computation 8(1): 1-29.

[21] Cristea, P., A. Arsene, B. Nitulescu, 2000. “Evolutionary
Intelligent Agents,” Proc. 2000 Congress on Evolutionary
Computation 2: 1320-1328.

[22] Padberg, M. and G. Rinaldi. 1987. “Optimization of a 532-
city symmetric traveling salesman problem by branch and
cut.” Operations Research Letters 6: 1-7.

[23] Applegate, D.L., R.E. Bixby, V. Chvatal, and W.J. Cook.
2006. The Traveling Salesman Problem. Princeton
University Press, New Jersey, USA.

[24] Concorde TSP solver webpage:
www.tsp.gatech.edu/concorde.html

[25] Golden, B.L. and W.R. Stewart, 1985. “Empirical
Analysis of Heuristics.” In The Traveling Salemsan
Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan
and D.B. Shmoys, eds. John Wiley.

[26] Bentley, J.L. 1990. “Experiments on Traveling Salesman
Heuristics.” Proc. 1st Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, Philadelphia, PA. pp. 91-99.

[27] Syslo, M.M., N. Deo, and J.S. Kowalik. 1983. Discrete
Optimization Algorithms with Pascal Programs. Prentice
Hall, Englewood Cliffs, NJ.

[28] Rothlauf, F. 2002. Representations for Genetic and
Evolutionary Algorithms. Physica-Verlag.

[29] Deb, K. “Encoding and Decoding Functions,” in [30]
Wooldridge, M. and N.R. Jennings. 1995. “Intelligent

Agents: Theory and Practice” The Knowledge
Engineering Review. 10(2): 115-152.

[31] Grefenstette, J.J., R. Gopal, B.J. Rosmaita, and D. Van
Gucht. 1985. “Genetic Algorithms for the Traveling
Salesman Problem”. Proc. 1st Int’l Conf. on Genetic
Algorithms. pp. 160-168.

[32] Potvin, J. 1996. “Genetic Algorithms for the Traveling
Salesman Problem”. Annals of Operations Research,
63(3): 337-370.

[33] Eiben, A.E. and J.E. Smith, 2003. Introduction to
Evolutionary Computing. Springer-Verlag.

[34] Wolpert, D.H. and W.G. Macready. 1997. “No Free Lunch
Theorems For Search,” Technical Report SFI-TR-95-02-
010, Santa Fe Institute, Santa Fe, NM, USA.

[35] Swartz W., and C. Sechen (1990), “New Algorithms for
the Placement and Routing of Macro Cells,” in
Proceedings of the IEEE Conference on Computer-Aided
Design, Santa Clara, CA, November 11-15, IEEE
proceedings: Cat No. 90CH2924-9, pp. 336-339.

[36] Cagan, J., K. Shimada, and S. Yin. 2002. "A Survey of
Computational Approaches to Three-dimensional Layout
Problems", Computer Aided Design, 34(8): 597-611.

[37] Tiwari, S., G. Fadel, P. Fenyes, 2008. “A Fast and
Efficient Compact Packing Algorithm for Free-Form
Objects,” to appear in Proc.ASME IDETC/CIE 2008.

MD-08-1167 11 Cagan

List of Figures

Fig. 1 Structure of proposed EMAS agent chromosome
Fig. 2 Flowchart of agent activation
Fig. 3 Category and individual algorithm behavior for ATT48

(a and b) and for ATT532 (c and d)
Fig. 4 Total correlation coefficient of agent behavior to

average of previous trials vs. solution quality for 5 new
trials of EMAS on 48-city problem

Fig. 5 Comparison of computation time and solution quality
of forced conditions scenario

List of Tables

Table 1 Placement of EMAS in relation to relevant

evolutionary computing concepts and literature
Table 2 Mean distance (%) from optimum solution and

standard deviation of hybrid algorithms compared to
EMAS algorithm for 48- and 532-city problems

Table 3 Comparison of EMAS to randomly generated team for
ATT532 (averages of 50 trials)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

